'Free logic' is an abbreviation for 'logic whose terms are free of existential assumptions, both singular and general.' Free logics attempt to deal with languages containing singular terms that do not denote anything, such as 'Pegasus'.
Free logics come in 3 basic flavors, which differ over what truth-values should be assigned to (atomic) sentences containing non-denoting names.
-
Negative free logics declare all such sentences false;
-
Neutral free logics declare all such sentences neither true nor false; and
-
Positive free logics declare at least some such sentences true (in particular, 'Pegasus=Pegasus').
Tyler Burge argued for negative free logic over its rivals in "Truth and Singular Terms,"
Nous (1975). I came up with a little argument against negative free logic; but I do not know the argumentative landscape for these 3 options particularly well, so this may be extant already. (Note: if any readers have references for arguments pro and con negative free logic, I'd be very interested. I've found a couple of nice articles by James Tomberlin, and a short response by Richard Grandy to Burge's piece, but not much else.)
According to the negative free logician, all atomic sentences containing non-denoting names are false. Some people reject this because calling 'Pegasus=Pegasus' false seems wrong; here's another problematic type of case. Consider the following three sentences (and assume for the sake of argument that 'Atlantis' is a non-denoting name):
(1) Atlantis is West of London.
(2) Atlantis is East of London.
(3) Atlantis and London have the same longitude.
In negative free logic, all three of these must be false. But for the three predicates 'is west of,' 'is east of,' and 'has the same longitude as,' any one of the three can be defined in terms of the other two using only negation and conjunction. E.g.:
'x is west of y' means 'x is not east of y, and x does not have the same longitude as y.'
But now we've got a problem: If 'Atlantis is west of London' is false (as the free logician says), then at least one of 'Atlantis is east of London' or 'Atlantis and London the same longitude' has to be true -- but that contradicts the earlier assumption (of the negative free logician) that all of (1)-(3) are false.
And this same problem will crop up in general when we have a set of predicates that are definable in terms of one another and negation; in the simplest case,
P = ~Q. And this is not that rare: {'before', 'after', 'simultaneous'} is another example. The negative free logician could save her position by maintaining that two of the predicates are somehow really basic, and the other really derivative. But at least in these two cases, it doesn't look legitimate to hold that 'west' is somehow fundamental and 'east' merely derivative.
Does anyone see a good response to this objection on behalf of the proponent of negative free logic?